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Abstract

An efficient algorithm is presented which allows each node in a computer
network to maintain a correct view of the network topology despite link and
node failures. Reliability is achieved without transmitting any information
other than the operational status of links. Messages are only sent in response
to topological changes: periodic retransmission is not required.

The algorithm is extended to allow nodes to maintain contstion measure-
ments used in making routing decisions.

1 Introduction

At any time while a store and forward computer network is operating one or more
of its communication links or processing nodes may malfunction or be put back
into service. The recovery of the network from such a change in its topology is an
essential part of providing reliable data communication. This paper is concerned
with the problem of keeping each network node informed of the entire network
topology when it is subject to occasional changes over time. Any network which
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uses decentralized adaptive routing needs to address this problem. The classic
example of this is the ARPANET, where each node maintains a map of the entire
network and uses it in making routing decisions [1,2]. Even networks which use
some form of hierarchical routing need to solve this problem within some level of
the hierarchy.

Topological changes may occur at any time. Since all messages sent in the
network are subject to delay, a node can never be certain that it knows the correct
topology at some instant of time. However, distributed algorithms can be designed •%
to guarantee that each node is made aware of the correct status of each link to
which it is connected', provided that the topology does not change for a sufficient
but finite time. Algorithms which accomplish this are called topology algorithms. "s

A topology algorithm is a set of rules governing the topology information stored usuallyat a node, as well as the contents, transmission, and reception of algorithm rues-,-..
sages. These messages are called topology updates or update messages. They usually

contain an indication of the operational status (up or down) of one or more network
links. When a network is started or reinitialized the algorithm must determine the
initial network topology and communicate it to every node. Thereafter, the topology
information must be kept current by update messages which are sent periodically
or in response to a topological change.

Although it might appear that any effective method of broadcast could serve as
a topology algorithm, there are several subtle issues which cause difficulties.

1. The links which are used to communicate topology information are themselves
subject to fail at any time. The failure of a link creates additional topology
information which must be communicated. It may also block the transmission
of previous topology information about other links, and in the worst case may
divide the network into two disconnected sets of nodes. ... %

2. A link may experience several topology changes within a short time. Other
network nodes must be able to determine which change was the most recent.
In general, nodes must be able to distinguish between old and new information
about the status of a link.

3. While a topology algorithm is running, additional topology changes may oc-
cur. The topology algorithm must be capable of either incorporating new
information during execution, or of starting a new algorithm version. If dif- 0
ferent versions are used, each node must be able to determine which is the

. most recent version, a problem similar to 2 above.
'I.

'A node is said to be connected to a link if there is a path of operating links from the node to
either end node of the link.
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4. The repair of a single link can cause two parts of the network which were dis-

connected to reconnect. Each part may have arbitrarily out-of-date topology
information about the other. The algorithm must ensure that the two parts
eventually agree, and adopt the correct network topology.

In order to overcome these difficulties, algorithms have been designed which are

quite complex [3,4,5,6,7]. A common approach is to include auxiliary information
such as message counters, sequence numbers, or age fields in update messages along

with the topology information itself [2,4,5]. The sequence numbers are used to
distinguish between old and new messages. Some algorithms employ several types

of messages for different purposes such as initialization, acknowledgements, and
termination. Update messages can be sent periodically, or in the case of event driven
algorithms, only in response to topological changes. Algorithms may respond to a

topological change by rebuilding the entire network topology, or by modifying an

existing topology to reflect the change. Lastly, some algorithms provide theoretical
guarantees of correctness, while others are designed to work correctly in all but the
most unusual circumstances.

In this paper we take a rather unconventional approach to solving the topol-
ogy problem. The algorithm which we present, called the Shortest Path Topology
Algorithm (SPTA), uses no auxiliary information at all. The update messages con-

sist only of topological information, i.e. link status information. The algorithm is

purely event driven in that nodes transmit messages only in response to receiving
a topology update message from a neighbor, or to detecting a status change in an

adjacent link. It does not rely on periodic retransmission of messages, or use timers
or clocks of any kind. The update messages are used by a node to modify its ex-
isting topology. There is only one type of message used, and no special cases for

reconnection of disconnected parts of the network. The simple message structure
allows a theoretical proof of correctness that is rather straight forward.

There are two main motivations for constructing an algorithm with the above
characteristics. Although the use of auxiliary information is a logical way to deal
with the four difficulties mentioned earlier, it also introduces additional problems
[8]. For example, if sequence numbers are used, the finite bit field used to store
them may eventually wrap around. While this can be avoided by choosing a large
bit field, some provisions should still be made for resetting the numbers. The intro- ,

duction of auxiliary information into update messages usually leads to increasing
complexity. An algorithm which avoids auxiliary information entirely avoids also
the complexities and difficulties associated with it. Apart form this there is the
academic question of whether topological information alone is sufficient to solve

the topology problem. SPTA shows that although auxiliary information may be
desirable in some circumstances, it is not required in topology algorithms. By ex-
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changing only link status information, the network nodes can arrive at and maintain
a correct topology.

2 The SPTA Algorithm
The main idea behind SPTA is that each node is viewed as trying to construct
the network topology based on reliable information that it has about the status of Y
adjacent links, and possibly unreliable information (in the sense that it might be
outdated) that it has received from neighboring nodes. Each piece of link status
information that a node receives from a neighbor is assigned a distance measure-
ment based on the shortest path distance from the neighbor to the link in question.
When trying to determine the status of a link, a node chooses the piece of informs-
tion with the smallest distance measurement which it has received concerning that
link. High reliability of link status information is associated with a small distance
measurement.

2.1 Assumptions

The correct operation of any topology algorithm depends strongly on the way in '

* which link status changes are detected by the network nodes. The status change
of a node (node failure or repair) will be represented by a status change in each of

--, the links adjacent to the node. When a link changes status this is detected by both
end nodes, perhaps nonsimultaneously. Each end node decides whether a link is up
(operating) or down (not operating). If one end node declares a link to be down,
then the other end node must also declare it to be down before either can bring

the link up. When a link is down, update messages are not received on it. When a
link is up it provides error free communication with finite delay between its two endnodes, and maintains the order of transmitted messages. The foregoing assumptions

merely imply that there is a reasonable data link control protocol operating between
the two end nodes of a link, but leave a great deal of flexibility in the design of the
protocol. Lastly, we assume that nodes maintain the integrity of data and messages
which are stored in their memories.

2.2 SPTA Data Structures and Rules
Each node i in the network maintains a topology table 7P called its main topology

table. A topology table is a list of the operational status of each link in the network.
V contains and entry T'() for each link 1, and reflects node i's current best estimate
of the network topology. It is the official topology that would be used by a routing
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Figure 1: The Main and Port Topology Tables for a Simple Network. Emma

algorithm operating at node i. In addition to its main topology table, node iI" maintains a port topology table T1 associated with each neighboring node j. The
entry in this table for link I is denoted TQ(1). The superscript indicates that the
table is stored at node i, while the subscript indicates that it is associated with
neighboring node j. The information stored in table 2% is the latest topology
information received by node i from node j. The tables stored at node i are shown in
Figure 1. When a node's main topology table changes, it sends a message notifying
each of its neighbors of the change. Therefore, 2? is essentially a delayed version
of node j's main topology table, T. The only exception to this is for links which
are adjacent to node i. Since i always knows the status of its adjacent links, it can
enter this information directly into each of its port tables and its main table. Any
update message which i receives concerning its adjacent links is ignored.

The following communication rules are used to maintain the topology tables
described above.

1. When an entry in a node's main topology table changes, a message containing
the new value is sent on each operating adjacent link.

2. When a node receives a topology change message from a neighbor which con-
cerns a nonadjacent link, it enters the change in the port topology table as-
sociated with that neighbor.

3. When a node detects that an adjacent link has become operational, it trans-
mits its main topology table over that link.
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Rule 3 is needed since while a link is down, the port topology tables associated with
it can become arbitrarily out-of-date. Therefore, when the link becomes operational
the entire port table needs to be refreshed.

The remaining portion of SPTA deals with how a node constructs its main
topology table based on the contents of its port topology tables. Since each topology
table specifies a graph, we can perform a shortest path operation using a table and
considering each link to have a distance of 1. Let shortest-path(j,1, ri) be the
length (in links) of the shortest path from node j to the closest end node of link I

according to the port topology table ri. Using this, we define the following distance
measurement.

D; (1) = 1 + shortest-path(j, 1Trj)
For links I which are disconnected from node j according to 27', D(1) is considered .,

to be arbitrarily large. High reliability of link status information 7(1) is associated
with a small value of D,(I). When link (i,j) is down, node i calls port table 1"j'
inactive, and disregards all information stored in it. An inactive port table becomes
active after an update message is received from the neighbor associated with that
table. This insures that the table has been refreshed via rule 3 before it is used.'

:2 Node i maintains its main topology table according to the following rules.

4. When an adjacent link changes status, the change is entered in each of node
i's port topology tables and its main table.

5. When an entry in one of node i's port topology tables r changes, it recalcu-
lates D0,() for each nonadjacent link 1. It then constructs its main topology
table by setting T'(L) equal to 27.,(1), where 2j, is the active port table with
the smallest distance measurement for link 1. If I is disconnected according to
each active port table, then T'(1) is not modified.

- In rule 5 above a node is in effect polling its port tables for each nonadjacent link I
and choosing the entry with the smallest distance measurement. Ties can be broken
arbitrarily or according to a fixed ordering of port tables. Together, rules I through
5 completely specify SPTA.

16 e,%.

2.3 SPTA Implementation Outline

The following is an outline for an implementation of SPTA which refers to the above
rules. Consider the algorithm operating at each node i. An active neighbor of i is

2 Waiting to receive a menage before calling a port table active is not required for correct operation,

but avoids temporarily propagating out-of-date information.
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one connected by an operating link.

A. (A node processor is reinitialized.)

1. Each adjacent link is initially considered down.

2. All entries in the main and port topology tables are set to down.

B. (A message is received from neighboring node j concerning the status of link

1. The new status of I is entered in T,(1).

2. Dj (k) is recomputed for each link k.
3. The main topology table is reconstructed.,,-'

4. Any changes in TV are sent to all active neighbors.

C. (Adjacent link I goes down)

1. The new status of I is entered in each port table and the main table.

2. D (k) is recomputed for each link k and each neighbor j.
3 & 4. Same as B.3 and B.

D. (Adjacent link I goes up.)

Same as in C except that the entire new main topology table is sent on
link 1.

2.4 Correctness Proof of SPTA

Assume that at some time t. a network is in steady state. This means that for each
node within a connected component of the network, the main topology tables are
correct for each link which is adjacent to a member of the component. In addition, ..
no algorithm messages are being transmitted. Note that a node is in steady state
immediately after being reinitialized. Between time t. and some later time to an
arbitrary number of link topology changes occur. For a sufficient but finite time
interval after to no further topology changes occur.' We wish to show that at some
later time t 2! to steady state has been reestablished. Let T" be the correct network
topology that an omniscient observer would see upon examining the network after
t 0 . We say that node i "knows the correct topology" if its main topology P1 agrees

SThis excludes situations where the topology is continuously changing. SPTA is not applicable in

these situations.
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with T" for all links that are connected to i. We begin by showing the following

theorem.

Theorem 1. SPTA works correctly in the sense that, under the preceding assump- .
tions, there is a finite time t1 after which each node knows the correct topology. N %

Proof. In what follows, we say that a link I is at distance n away from i if in the

graph defined by T* the shortest path from i to the closest end node of I is n hops
long. We will show by induction that for each integer n > 0 there is a time t. : t.
after which, for each node i, TV agrees with T* for all links that are at a distance
of n or less from i. The induction hypothesis is clearly true for n = 0 since each
node i knows the correct status of its adjacent links and records them in its main

topology table 2". We first establish the following lemma.

Lemma 1. Assume that the induction hypothesis is true for time t.. Then there
is a time t,.+, 2 t. after which the port topology table 2*, for each active neighbor
j of node i, agrees with T" for each link at a distance n or less fromj.

Proof. Consider waiting a sufficient time after t. for all messages which were sent
from j to i before t. to arrive. By rules 1, 2, and 3 of the algorithm, T agrees with
T for all links which are not adjacent to i. Therefore, by the induction hypothesis
7j agrees with T* for each link at a distance of n or less from j which is not adjacent
to i. By rule 4 the correct status of links adjacent to i are recorded in 2''. Therefore,
7 also agrees with T" for all links adjacent to i. This proves the lemma. "

To complete the proof of Theorem 1 we must show that after time t,+,, V" agrees
with T* for all links I which are at a distance n + I from i. Each neighboring node
of i must be at a distance of at least n from 1. Let J be the nonempty subset of i's
neighbors which are at a distance of exactly n from I. Consider a port topology table
7 such that j E J. By lemma 1, 7 agrees with T" for all links at a distance of n or
less from j. From rule 5 of the algorithm, i will calculate a distance measurement
for link I of D2(1) = n + 1. This is true for each neighbor " E J. Now consider each
neighbor j V J. By rule 5 of the algorithm, node i will calculate D,() > n + 1.
If this were not true, it would imply that in the graph described by j there is a
working path of n links or less connecting j to one of the end nodes of i. But by
lemma 1, T" and 7j' agree on the status of these links and no such path exists.
Therefore, by rule 5 V (I) will agree with Vi(1) for j E J. This implies that T' will
agree with T" about link I and completes the proof of Theorem 1.

After t! a node i's main topology table will not change concerning links to which
i is connected. Rule 5 states that 2V will not change concerning disconnected links
either. Since a node only transmits messages when its main topology changes, node
i will not transmit any messages after t1 . A finite time later a condition of steady

E,8
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state will be reestablished. This completes the correctness proof of SPTA.

3 Algorithm Characteristics

The time complexity [9] of SPTA can be established by examining its correctness
proof. We are interested in the time from t. until the algorithm terminates, assuming
that each message takes one time unit to transmit. At time td (where d is the
network diameter) Theorem 1 is satisfied, and one time unit later the algorithm
terminates. Therefore, for an n node network the time complexity is O(n).

The communication complexity for single link topology changes can be estab-
lished by examining rule 1 of SPTA. When a node's main topology table changes,
it sends a message on each of its adjacent links. This results in 21 messages being
sent on an I link network and gives 0(1) communication complexity. Unfortunately,
when multiple link failures occur, there are unusual situations in which this result
does not hold. Figure 2 illustrates one such situation. When node 1 detects that
link B has failed, it considers port table T2 inactive and ignores all information
contained in it. To determine the status of link A node 1 looks to its other port
table T3. Since the message "(3--1, Al)" sent in event 2 has not yet arrived, T3.
still lists link A as up. Node 1 temporarily has an incorrect status for link A and
sends it to node 3. The situation is corrected as soon as the above delayed message
arrives in event 4. Notice that node 1 sends three messages to node 3 concerning
link A, whereas A's status has actually changed only once. If such examples are

"" carried to their extreme, it can be shown that the maximum number of messages
sent increases as 2

h, where k is the number of link status changes [10]. Although
this behavior is undesirable, it can only occur in rare situations such as when a link
fails immediately after transmitting a topology message. It does not occur when a
single link or node fails. In most practical situations, the algorithm sends 21k mes-
sages. The only serious concern is that this behavior could cause many algorithm P
messages to be queued for transmission on a link. However, this cannot occur since
the most information that ever needs to be queued is the contents of a single port 7.77.
table. Any new status information simply replaces the old status, and does not add
to the size of the queue.

The amount of processing required by the algorithm can be greatly reduced by
constructing the main topology iteratively rather than by doing a shortest path V

calculation on each port topology table, as is implied by rule 5. A node first enters
the status' of its adjacent links into its main table. It then finds all links one hop
away and enters their status'. This continues for links two hops away etc. until the
status of each connected link has been entered.

9
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Figure 2a. An Example Network. All links are initially up. Link A fails. Shortly
afterward, link B fails.

[Event [Description
1 Link A fails.

_______(2-el1, Al) and (2-+3, Al) sent and received.
2 (3--+2, AI), (1--+3, AI), and (1--e2, Al) sent and received.

_______(3-+l, AJ) sent but not yet received.
3 Link Bfails.

_______(1--+3, Bl), (1--+3, AT), arnd (2--e3, El) sent and received. V

4 (3--+l, Al) that was sent in Event 2 arrives.
(1--+3, Al) sent and received.

Figure 2b. Sequence of Events. The table shows the messages sent in response to
the change in status of links A and B. Notation: (-.,11)" indicates a
message sent from node i to node j saying that link I is down.

(Event IT'1 T2 T 1 TS? T4? TI T3 T T2'14T'
1 dui du uu du du du dui dui uu dui du du

2 dii du uu dii dii du du du dii du du dii
3 iddd_ _ _ __dddd d d ddud

4 dddd ud dd dd dd dd dd ud dd Jdu du

Figure 2c. Topology Table Contents. All topology table updating is assumed to
*take place immediately following an event. Notation: "du"~ means that in M

the indicated topology table, the entry for link A is down and the entry for 7'~
link B is up.

Figure 2: SPTA Operation for Multiple Link Failures.
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It is interesting to examine the behavior of SPTA when the assumption that
nodes have error free memories is violated. Errors which occur in the main topol-
ogy table are of no concern since they can always be corrected by using the port
topologies and the known status of adjacent links. Similarly, detected errors in a
port topology can be corrected by requesting retransmission from the appropriate
neighbor. However, like all event driven algorithms, SPTA has no ability to correct

• "undetected database errors. Without periodic retransmission an undetected error
can persist for an arbitrary length of time. One obvious solution is using coding
on the port tables to make the probability of an undetected error sufficiently small.
In situations where extraordinary reliability is needed, a node could periodically __-

retransmit its main table to each of its neighbors. This would destroy the event I_
driven property of SPTA, but would maintain its other desirable characteristics,'
and allow recovery from undetected database errors.

4 Handling Routing Information

In order to make routing decisions, nodes often need a recent measure of the con-
gestion in each direction on each network link. We are not concerned with how
these measurements are made, but wish to design a distributed algorithm which
will deliver them to each node in a connected set despite the presence of topologi-
cal changes. This can be considered a generalization of the topology problem with
directed links and nonbinary link status'.

A simple extension of SPTA can be used to solve this problem. A physical link
1 connecting nodes i and j is considered to be (for the purpose of congestion mea-
surements) two directed links i--j and j--+i. A node is considered to be adjacent to
its outgoing directed links, and at random times measures their congestion. Let Ci
be a node i's main congestion table which contains a congestion measurement for
each directed network link. Similarly, let C1 be node i's port congestion table asso-
ciated with neighboring node j. To handle routing information, SPTA is extended

-' to include the following rules.

1. When an entry in a node's main congestion table changes, a message contain-
ing the new value is sent on each operating adjacent link.

2. When a node receives a congestion update message from a neighbor which con-
cerns a nonadjacent directed link, it enters the change in the port congestion
table associated with that neighbor.

3. When a node detects that an adjacent link has become operational, it trans-
mits its main congestion table on that link.

11I --.



. When an adjacent directed link changes its congestion value, the change is
entered in the main congestion table.

5. When the entry for a directed link in one of a node's port congestion tables
changes, it recomputes the zain congestion table entry for that link by chosing
the port table entry with the smallest distance measurement. A directed link
has the same distance measurement as the corresponding undirected link.

6. When an entry in one of a node's port topology tables changes, it recalculates
each entry in its main congestion table according to above rule 5.

Correctness of the above can be established by using an inductive argument
which parallels the proof of SPTA. With this extension, SPTA can be used as a

practical event driven alternative to standard algorithms such as the ARPANET
update procedure.
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